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Initialized Fractional Calculus

Carl F. Lorenzo
National Aeronautics and Space Administration

Glenn Research Center
Cleveland, Ohio 44135

 Tom T. Hartley
The University of Akron

Department of Electrical Engineering
Akron, Ohio 44325-3904

Abstract
This paper demonstrates the need for a nonconstant initialization for the fractional

calculus and establishes a basic definition set for the initialized fractional differintegral. This
definition set allows the formalization of an initialized fractional calculus. Two basis calculi are
considered; the Riemann-Liouville and the Grünwald fractional calculi.Two forms of
initialization, terminal and side are developed.

1.  Introduction

The issue of initialization has been an essentially unrecognized problem in the
development of the fractional calculus. Liouville’s definition ([5], p.21) for the fractional integral
with lower limit of ∞− and Reimann’s ([5],  p.21) choice of the lower limit of c, were in fact
related to the issue of initialization.  Ross [8],[9] recognizes that to satisfy composition of the
fractional differintegral, that the integrated function and its (integer order) derivatives must be
zero for times up to and including the start of fractional differintegration. Podlubny ([7] pp.
125,133) recognizes the need for initialization but carries it no further. Ross provides a history of
the fractional calculus (see [6], p8.) in which he quotes A. Cayley referring to Riemann’s paper
“The greatest difficulty in Riemann’s theory, it appears to me, is the interpretation of the
complementary function….”  Ross continues,  “The question of the existence of a complementary
function caused much confusion.  Liouville and Peacock were led into error, and Riemann
became inextricably entangled in his concept of a complementary function.”  In retrospect the
difficulties of Riemann over the role of the complementary function, which has been abandoned
in this mathematics, may in fact have been related to the issue of initialization. The
complementary function issue is raised here because an initialization function, which accounts for
the effect of history, for fractional integrals and derivatives, will appear in the definitions
presented. Its form is similar to Riemann’s complementary function, however, the meaning and
use of this function is different (now clear).

In the solution of fractional differential equations with an assumed history, it has been
implicitly inferred by many authors ([1], [5], [6], [7], [10], and others), that an initializing
constant, or set of constants, representing the value(s) of the fractional differintegrals (at t = 0)
will provide an adequate representation for the effects of the past for each differintegral. That this
is not true will be demonstrated in this paper.

Finally, because the constant initialization of the past is insufficiently general, the widely
used contemporary equation for the Laplace transform for the differintegral ([6], p.135 for
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example), based on that assumption also lacks sufficient generality.  An alternative generalized
form is presented.

1.1 Proof of Non-Constant Initialization
Consider the following qth order fractional integrals of ( )tf , the first starting at time at = , and
the second starting at time act >=

( ) ( ) ( ) ( ) ( )∫ −− −
Γ

=
t

a

qq
ta dft

q
tfd 1.1.1

1 1 τττ

and

( ) ( ) ( ) ( ) ( )2.1.1.
1 1∫ −− −

Γ
=

t

c

qq
tc dft

q
tfd τττ

Assume that ( )tf is zero for all at ≤ , then the time period between at =  and

ct = maybe considered to be the “history” of the fractional integral starting at ct = , namely,

( ).tfd q
tc
−  Then, we should expect that when this integral, ( )( )tfd q

tc
− , is properly initialized that

it should function as a continuation of the integral starting at at = . To achieve this an

initialization must be addended to ( )tfd q
tc
− so that the resulting fractional integration starting at

ct = should be identical to the result starting at  at =  for ct > .  Thus, calling ψ  the unknown
initialization we have that

( ) ( ) ( )3.1.1.cttfdtfd q
ta

q
tc >=+ −− ψ

Then

( ) ( ) ( )4.1.1.cttfdtfd q
tc

q
ta >−= −−ψ

( ) ( ) ( ) ( ) ( )5.1.1.
1 1 cttfddft
q

q
ca

c

a

q >≡−
Γ

= −−∫ τττψ

Here ψ is seen to be a function of the independent variable t, completing the proof. We see that

ψ is a generalization of the case for the ordinary integral (1=q ), where

( ) constant.== ∫
c

a

df ττψ

The insight for this behavior was originally obtained through the study of one-
dimensional semi-infinite diffusion and wave equations [2].

Having now recognized the need for a more general initialization, it must be decided if it
is prudent to proceed as is done in the ordinary (integer order) calculus.  That is, to append the
initialization  (constant of integration or constant initialization terms of ordinary differential
equations) when required in an ad hoc manner or to formalize the process.

Because of the increased complexity of the initialization relative to the integer order
calculus case it is prudent to formalize the initialization, that is to include an initialization term
into the definitions for the fundamental operators. The remainder of this paper will establish the
definition set for an initialized fractional calculus, consider briefly the ‘Ross criteria” [8],[9] for a
calculus, present a generalized (corrected) form for the Laplace transform of a differintegral, and
demonstrate the solution of properly initialized fractional differential equations.
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2. Definitions for the Initialized Fractional Calculus

Several bases are possible for the initialized fractional calculus, these include the Riemann-
Liouville, and the Grünwald formulations. The Riemann-Liouville form of the fractional calculus
will be the only basis considered here. A consideration of a Grünwald based initialized fractional
calculus may be found in [3].  In the development that follows, attention is restricted to real
values of the order, q , of the various differintegrals.

Two types of initializations are considered, ‘terminal initialization”, where it is assumed that
the differintegral operator can only be initialized ("charged") by effectively differintegrating prior
to the "start" time, t c= , and “side initialization”, where a fully arbitrary initialization may be
applied to the differintegral operator at time t c= . The terminologies “terminal charging” and
“side charging” have also been used to describe these initialization processes [3].  For discussion
purposes, it is assumed that t (time) is the independent variable associated with the fractional
differintegration and the function to be differintegrated is ( )tf .

2.1 Initialization of Fractional Integrals
2.1.1 Terminal Initialization
    Terminal initialization is considered first. It is assumed that the fractional integration of interest
"starts" at t c=   (i.e. point of initialization).  Further, ( )f t = 0 for all t a≤ , and the fractional
integration takes place for t c a> ≥ . The initialization period (or space) is defined as the region

.cta ≤≤
The standard (contemporary) definition of a fractional integral will be accepted only when

the differintegrand ( )f t = 0for all t a≤
Then,

( ) ( ) ( ) ( ) ( )1.1.1.2,,0,
1 1 atvdf-t
v

tfD
t

a

-vv-
ta >≥

Γ
≡ ∫ τττ

subject to ( )f t  =     t  a0  for all ≤ . The following definition of fractional integration will apply
generally (i.e., at any t c> ) :

( ) ( ) ( ) ( ) ( ) ( )2.1.1.2,,0,
1 1 ctvtc,a,f,-v,+df-t
v

tfD
t

c

-vv-
tc >≥

Γ
≡ ∫ ψτττ

( ) .at=tfac ≤∀≥ 0and

 The function ( )tcavf ,,,,−ψ  is called the initialization function and will be chosen such that

( ) ( ) ( )3.1.1.2c.ttfD=tfD v
tc

v
ta >−−

Substituting the results from equations 2.1.1.1and 2.1.1.2, then, for ct >  and 0≥v gives

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )4.1.1.2,,,,
11 11 tcavfdft
v

dft
v

t

c

v
t

a

v −+−
Γ

=−
Γ ∫∫ −− ψττττττ

Because ( ) ( ) ( )∫∫∫ +=
t

c

c

a

t

a

dgdgdg ττττττ ,

( ) ( ) ( ) ( ) ( ) ( )5.1.1.2.0,,
1 1 >>−

Γ
= ∫ −− vctdft

v
 = tfDf,-v,a,c,t

c

a

vv
ca τττψ
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This expression for ( )ψ t  applies for the terminal initialization condition. Clearly, ψ  brings to
the definition of the fractional integral the effect of the past, namely the effect of fractionally
integrating ( )f t  from ca to . This effect will, of course, influence behavior after the time,

t c= .  The ψ  function has the effect of allowing the function ( )f t and its derivatives to start at

a value other than zero, namely the value ( ) |a c
q

t=c D f t  − ,  and the ψ -function continues to

contribute to the differintegral response after t c= . That is, a function of time is added to the
uninitialized integral, not just a constant.
   The integer order integrals under terminal initialization are of special interest. Evaluating

equation 2.1.1.5, for example, for v = 1, indicates that ( )ψ f a c t, , , ,− =1 constant. The general

case is readily shown to be

( )ψ f n a c t c t ni
i

i

n

, , , , , , ,− = =
=
∑

0

1 2 3�  .

This, of course, is the same effect as seen in the integer order calculus using the “constant of
integration.” It is important to note that the initialization of the qth fractional integral of ( )f t  is

not unique in the following sense. That is,( )f t can be considered as a composite function, for

example, ( ) ( ) ( ) ( ) ( ) ( )( )f t g t U t c h t U t a U t c= − + − − − , where ( )U t is the unit step function

( )U t
t

t
=

<
>





0 0

1 0 .

 Then for this composite function ( )f t , it is the function ( ) ( )g t U t c−  that is being

differintegrated and ( ) ( ) ( )( )h t U t a U t c− − − is the function on which the initialization is based.

This is analogous to choosing an arbitrary constant value to initialize (the integration of) dy dt/
in the solution of an ordinary differential equation.

2.1.2 Side Initialization
    When side initialization is in effect as opposed to terminal initialization equation 2.1.1.2 is still
taken as the operative definition and,

( )( ) ( )1.2.1.2.arbitraryisi.e.,tψψ =
That is, equation 2.1.1.5 no longer (generally) applies.

2.2 Initialization of Fractional Derivatives

To extend the definition to the fractional derivatives, some issues must be addressed. The
definition of the fractional derivative raises the following important questions in the context of
initialization. Do fractional derivatives require an initializing function in general?  Further, do
integer order derivatives in this context require initialization functions? Clearly as we commonly
think of derivatives, in the integer order calculus, the derivative is a local property and is
represented geometrically as the slope of the function being considered and as such it requires no
initialization. In the solution of differential equations the initialization constants which set the
initial values of the derivatives really have the effect of accounting for the integration of the
derivative from minus infinity to the starting time of the integration (of the differential equation).
      A study of the representation of semi-infinite systems using fractional differential equations
[2],[3] indicates that the fractional derivative is not a local property as appears to be the case for
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integer order derivatives (in the integer order calculus). Further, to solve such fractional
differential equations an initialization function is required to handle the effect of the distributed
initialization. Also, the integer order derivative in the fractional context can be shown to require
an initialization function. Therefore, the answer to both questions is clearly YES. The impact of
this is to require an initialization function for the fractional (and integer order) derivatives.
     Thus, a generalized integer order differentiation is defined as

( ) ( ) ( ) ( )1.2.2,,,,, cttcamf+tf
dt

dtfD m

m
m
tc >≡ ψ

where mis a positive integer and where ( )ψ f m a c t, , , , is an initialization function. This is, of

course, a generalization of the definition of the derivative, and for many cases, for example,
usually in the integer order calculus, ψ will be taken to be zero.  It will be shown later that, for

m=1 with the condition of terminal initialization that ( )ψ f a c t, , , , .1 0=
   Now theuninitialized fractional derivative is defined as

( ) ( ) ( ) ( )2.2.2,0and,,0 attfatqtfDDtfD p
ta

m
ta

q
ta ≤∀=>≥≡ −

and (for convenience) m is the least integer greater than q q m p, .and = −  Now as in the

fractional  integral case ( )ψ f p a a t, , , , .− = 0  Further, since ( )ψ h m a a t, , , , = 0, where

( ) ( )h t D f ta t
p= − , this definition specializes to the contemporary definition of the fractional

derivative.
    Now the initialized fractional derivative is defined as

( ) ( ) ( ) ( )3.2.2,,0 actqtfDtfDtfD -p
tc

m
tc

q
tc ≥>≥≡

where (for convenience) m is the least positive integer greater than q and q m p= − .
The above definitions, equations (2.2.1) to (2.2.3), hold for both terminal initialization as well as
side initialization.

2.2.1 Terminal Initialization
    The initialization of the fractional derivative proceeds in a manner similar to the fractional
integral, that is, it shall be required that;

( ) ( ) ( )1.1.2.2.0with ≥≥>∀= qacttfDtfD q
ta

q
tc

Specifically, this requires compatibility of the derivatives starting at t a t c= =and , for t c> .
It follows then that

( ) ( ) ( )2.1.2.2.,0, actqtfDDtfDD p
ta

m
ta

p
tc

m
tc ≥>>= −−

Expanding the generalized integral terms

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )3.1.2.2.,,,,,
1

,,,,
1

1

1

cttaapfdft
p

D

tcapfdft
p

D

t

a

pm
ta

t

c

pm
tc

>





−+−

Γ

=





−+−

Γ

∫

∫

−

−

ψτττ

ψτττ

Since ( )ψ f p a a t, , , ,− = 0 and using the definition (eq.(2.2.1)) for the integer order derivative,

equation (2.2.1.3) may be written as
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( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )4.1.2.2,,,,,,
1

,,,,,,,,
1

2
1

1
1

cttaamhdft
pdt

d

tcamhtcapfdft
pdt

d

t

a

p

m

m

t

c

p

m

m

>+−
Γ

=+








−+−
Γ

∫

∫
−

−

ψτττ

ψψτττ

where ( )h D f ta t
p

1= − and ( )h D f ta t
p

2= − .  The integer derivative is uninitialized at t a= ,

therefore ( )ψ h m a a t2 0, , , , = . Then combining integrals gives

( ) ( ) ( ) ( ) ( ) ( )5.1.2.2.,,,,
1

,,,, 1
1 cttcapfdft

pdt

d
tcamh

c

a

p

m

m

>





−−−

Γ
= ∫ − ψτττψ

Under the condition of terminal initialization of the fractional integral, the argument of the

derivative above is zero thus ( )ψ h m a c t1 0, , , , = . For the case of side initialization of the

fractional integral part of the fractional derivative ( )ψ f p a c t, , , ,−  is arbitrary. Thus it can be

seen from the above equation that either ( ) ( )ψ ψf p a c t h m a c t, , , , , , , ,− or 1  can be arbitrary but

not both while still satisfying the requirements of the initialization (equation (2.2.1.5)).

2.2.2 Side Initialization
The fractional derivative, side initialization case, can now be stated as

( ) ( ) ( ) ( ) ( ) ( )1.2.2.2,,0,,,,,
1 1 ctqtcapfdft
p

DtfD
t

c

pm
tc

q
tc >≥









−+−
Γ

= ∫ − ψτττ

and is the least positive integer with   m q q m p ,> = −  or equivalently as

( ) ( ) ( ) ( ) ( ) ( ) )2.2.2.2(,0,,,,,,,,,
1 1 ≥+−+−

Γ
= ∫ −

qtcamhtcapf
dt

d
dft

pdt

d
tfD m

mt

c

p

m

m
q
tc ψψτττ

( ) ( )where is as above andm t c h t D f ta t
p, , .> = −  Here both initialization terms are arbitrary

and thus may be considered as a single (arbitrary) term, namely

( ) ( ) ( ) ( )3.2.2.2.,,,,,,,,,,,, tcamhtcapf
td

d
tcaqf

m

m

ψψψ +−≡

In the case of terminal initialization of the fractional integral part of equation (2.2.2.1)

( )ψ f p a c t, , , ,−  will be as defined by equation (2.1.1.5). It is noted, that the a and c arguments

in the ψ  functions in equations (2.2.2.1) to (2.2.2.3) are carried for parallelism to the previous
cases and are not intended to infer an initialization period under side initialization.

2.3 A Simple Example
A simple example will be helpful. Consider the semi-integral of ( ) ( ) ( )f t t a U t a= − − ,

then from ([6], pp. 63-64) the uninitialized semi-integral becomes

( ) ( ) ( )
( ) ( )1.3.2.,

5.2

2/3

at
a-t

=atUatD 1/2
ta >

Γ
−−−

 Now, initializing from the point t c=
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( ) ( ) ( ) ( ) ( ) ( ) cttc,a,,f,-+dat=atUatD
t

c

-1/2
tc >−−

Γ
−− ∫ − 2/1

2/1

1 2/1 ψτττ

( ) ( ) ( )( ) ( ) ( )2.3.22/132
2/13

2
c.ttc,a,,f,-+a-c+tc-t= 1/2 >

Γ
ψ

Consider now the terminal initialization,

( ) ( ) ( ) ( ) ,
2/1

1
2/1 2/1 ctdat=tc,a,,f,-

c

a

>−−
Γ ∫ − τττψ

( ) ( ) ( ) ( ) ( )[ ] ( )3.3.2,2232
2/13

2 2/12/1 c.tatat-c-a+t-c-t >+−−
Γ

=

The numerical evaluations of these equations for specific numerical values, a c= − =1 1, ,  are
shown in the graphs of figure 1.

3. Criteria for A Fractional Calculus

Ross [9] provides a set of criteria for a fractional calculus. The criteria include the
following properties: backward compatibility with the normal (integer order) calculus, the zero

property, namely ( ) ( ),0 tftfDtc =  linearity of the operators, and that the index law should hold,

that is, ( ) ( ) ( )tfDtfDDtfDD vu
tc

u
tc

v
tc

v
tc

u
tc

+== .  Under the conditions of terminal initialization

the above properties are each shown to hold ([3], pp. 26-44). This provides credibility to the

0
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7
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Figure 1  Sample Problem---Semi-Integral of (t-a) vs Time   with

 a= -1, c=1
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initialized fractional calculus, also completion of the proofs yields constraints on the allowable
initialization functions. For example, linearity of the fractional integral

( ) ( )( ) ( ) ( ) ( )1.3,cttgDktfDbtgktfbD v
tc

v
tc

v
tc >+=+ −−−

holds if and only if
( ) ( ) ( ) ( )2.3.,,,,,,,,,,,, cttcavgktcavfbtcavkgbf >−+−=−+ ψψψ

4. Laplace Transform of Fractional Differintegrals

The Laplace transform of the differintegral is an important tool in the solution of
fractional differential equations. The following form for the Laplace transform of the fractional
derivative is given by many authors (see for example, ([7], p.105), ([6], p.134), or an equivalent
form in ([5], p.123))

( ){ } ( ) ( ) )1.4(.1
1

0
0

1
00 npntfDssFstfDL

n

k
t

kp
t

kpp
t <≤−−= ∑

−

=
=

−−

The Laplace transform of the fractional integral is given ([7], p.104), and ([6], p.134) as,

( ){ } ( ) ( )2.4.00 >= −− psFstfDL pp
t

The form of the summation in equation (4.1) infers that the p- th order derivative is being
decomposed into a fractional integral (order < 1) and (n-1) order 1 derivatives. Further inferred is
that each derivative is initialized by an impulse at 0=t .  This situation is a residual from the
integer order calculus and lacks sufficient generality for a properly initialized fractional calculus.

It should be noted that in equations (4.1) and (4.2) above pD and pD− refer to the contemporary
uninitialized fractional derivative and integral respectively.

For the initialized fractional calculus the Laplace transform of the initialized fractional
differintegral ([3], p.61) is given by

( ){ } ( ){ } ( ){ } )3.4(,,,0,,,0 qtaqfLtfLstfDL qq
t ∀+= ψ

where ψ depends on; the assumed past history of ( )tfDq
t0 , and the assumed decomposition of

( )tfDq
t0 (as required in the problem definition). It should be noted that for 0>q in the most

general case (side initialization) that the equivalent form for ψ must be used. That is

( ) ( ) ( ) ( ) ( ) ( )4.4.where,0,0,,,,0,,,,0,,, tfdthqtamhtapf
td

d
taqf p

tam

m
−=>+−= ψψψ

More powerful forms than equation (4.3) have been derived that account for all possible

decompositions of ( )tfDq
t0 . For a detailed explanation of the decomposition issue the reader is

referred to ([3], p.46-58).

5. Fractional Differential Equations

Proper initialization is crucial in the solution and understanding of fractional differential
equations. The application of the initialized fractional calculus to the solution of initialized
fractional differential equations will be illustrated with the following examples.
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5.1 Example 1
 Podlubny ([7], p. 138) and Oldham and Spanier ([6], p. 157) consider the following
fractional differential equation

( ) ( ) ( ) )1.1.5(.;0,0 0
2/1

0
2/1

0 CtfDttfbtfD ttt =>=+ =
−

The notation ( )tfDt
2/1

0  is that of Podlubny, and of course, refers to the uninitialized derivative.

Equation (4.1) above, is used by Podluny, to obtain the Laplace transform of equation (5.1.1) as

( ) ( )2.1.5.
2/1 bs

C
sF

+
=

The inverse transform is then given in terms of a two-parameter Mittag-Leffler series expansion

( ) ( ) ( )3.1.5.
2

1
,

2

1
2/1 tbEtCtf −= −

 For 1=b , then this is determined to be

( ) ( ) ( )4.1.5,
1 





 −= terfce

t
Ctf t

π
which agrees with the result of Oldham and Spanier [6]. This is contrasted with the following
approach using the results from the initialized fractional calculus.

We now solve equation (5.1.1) again, but now ( )tfDt
2/1

0  is interpreted as an initialized

fractional derivative as defined in part 2.2 above. Thus, we have

( ) ( ) ( ) )5.1.5(.arbitraryis,0,,2/1,,0,02/1
0 tafttbftfDt ψ>=+

This may be rewritten as

( ) ( ) ( ) ( ) )6.1.5(.arbitraryis,0,,2/1,,0,0,0,,2/1,2/1
0 tafttbftaftfdt ψψ >=++

The Laplace transform of equation (5.1.5) using equation (4.3) is

( ) ( ) ( ) ( )7.1.5.
,0,,2/1,

2/12/1 bs

s

bs

saf
sF

+
−=

+
−= ψψ

   This equation should be contrasted to equation (5.1.2) above, they are only the same when
( ) ( )tCt δψ −= , that is, when an impulse at 0=t is used to initialize the fractional differential

equation!
Now the R-function and its Laplace transform [4], are given by

( ) ( ) ( )( )

( )( ) ( ) ( ) ( )8.1.5.0Re,0Re,
1

,,
0

11

, >>−
−

⇔
−+Γ

−≡ ∑
∞

=

−−+

svq
s

s

vqn

ct
tcR q

v

n

vqnn

vq α
αα

The general inverse for equation (5.1.7), is obtained by applying Laplace convolution integral,

( ) ( ) ( ) )9.1.5(.0,0,
0

0,2/1 >−−−= ∫ tdtbRtf
t

ττψτ

Thus, with arbitrary ( )tψ this provides the mostgeneral solution to equation (5.1.1), or (5.1.5).  If

we take ( ) ( )tCt δψ −=  in equation  (5.1.9), the result is

( ) ( ) ( )10.1.5,,0,0,2/1 tbRCtf −=
which is identical with the result of equation (5.1.2).  In the context of the initialized fractional
calculus, this might be considered as a pathological result of little interest. A more useful result
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would be obtained under the assumption of terminal initialization, that is apply equation (4.4)
with ,pmq −= ,2/1,1 == pm and ( ) 0,0,,, =tamhψ .  Then

( ) ( ) ( ) ( ) ( ) ( )11.1.5.
2/1

1
,0,,2/1,,0,,2/1,

0
2/1∫ −−

Γ
=−=

a

dft
dt

d
taf

dt

d
taf τττψψ

In this evaluation ( ( ) 0, <ttf ) need not be identical to (( ) 0, >ttf ), if ( )tf is considered to be a
composite function.

5.2 Example 2
A second fractional differential equation is considered by Podlubny ([7], p. 139), and has

a special case considered by Oldham and Spanier ([6], p.159 2/1,1 == qQ ). The general case,

of which it is said “encounters great difficulties except when Qq− is integer or half-integer,” is
given by

( ) ( ) ( ) ( ) ( )[ ] ( )1.2.5,, 0
1

0
1

000 =
−− +==+ t

q
t

Q
t

q
t

Q
t tfDtfDCthtfDtfD

Again, the notation ( )tfDQ
t0  is that of Podlubny, and refers to the uninitialized derivative. Here,

we shall assume the notation is that of this paper, that is represents the initialized fractional
derivative, and we shall relax the requirement that Qq− is integer or half-integer. The
initialization of equation (5.2.1) will be replaced by two separate ones to identify the most general
solution. Then the Laplace transform of equation (5.2.1) gives

( ) ( ) ( ) ( ) ( ) ( )2.2.5,,0,,,,0,,, 21 saqfsaQfsHsFssFs qQ ψψ −−=+
where the s'ψ are subscripted for convenience. This may be written, assuming that ,qQ >  as

( ) ( ) ( ) ( )( ) )3.2.5(.,0,,,,0,,,
1 21 saqfsaQfsH

s

s
sF qQ

q

ψψ −−





+

= −

−

The solution is easily written using the R-function as,

( ) ( ) ( ) ( ) ( )( ) ( )4.2.5.,0,,,,0,,,,0,1
0

21,∫ −−−−= −−

t

qqQ daqfaQfhtRtf ττψτψττ

This solution may be specialized to that of Podlubny by taking ( )tC δψ 11 −= , ( )tC δψ 22 −=
and 21 CCC += , namely

( ) ( ) ( ) ( )( ) ( )5.2.5.,0,1,0,1
0

,, ∫ −−+−−= −−−−

t

qqQqqQ dhtRtCRtf τττ

The important issue here is that the form of equation (5.2.5) does not allow the effect of
continuing the past as does equation (5.2.4).

5.3 Example 3
In this example, an approach will be demonstrated in which the entire fractional

differential equation is initialized as opposed to the above examples where the individual
derivatives were initialized. We now generalize equation (5.2.1) as follows

( ) ( ) ( ) ( )1.3.5.thtfDtfD q
tc

Q
tc =+

This may be rewritten as

( ) ( ) ( ) ( ) ( ) ( ) ( ) )2.3.5(.,,,,,,,, 21 tthtcaqftcaQfthtfdtfd eqiv
q
tc

Q
tc ψψψ −=−−=+

Now the Laplace transform of the uninitialized fractional derivative is ([3], p.60)

( ){ } ( ) ( )( ){ } ( ){ } ( )3.3.5.0 btfLsetfbtudLtfdL qbsq
t

q
tb +=−= −
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Thus, the Laplace transform of equation (5.3.2), for ,qQ >  is given by

( ){ } ( ) ( )
( ) ( ) ( ) ( )( ) )4.3.5(

1
sshsGe

sse

ssh
ctfL eqiv

cs
qQqcs

eqiv ψ
ψ

−=
+

−
=+ −−

Clearly the behavior of the fractional differential equation (or the system it represents) is captured

by the function ( ) ( )( )1/1 += −qQq sssG . We now consider two time domain segments, for domain

(1) we take 011 == ca , and for domain (2) 1,0 22 == ca .
Domain (1)

Now domain (1) will be used as the initializing period for domain (2). To do this let

( ) ( ) ( ) ( )( ),11 −−= ∗ tututhth  for simplicity here we take ( ) 1=∗ th . We also take

( ) 0,0 <∀= ttf thereby inferring ( ) ( ) 0,0,0,,,0,0,, 21 == tqftQf ψψ .  The domain (1)
solution then is given by

( ){ } ( )
( ) ( ) ( )5.3.5,

1

1

1
11 sG

s

e

ss

e
tfL

s

qQq

s






 −=
+

−=
−

−+

−

and
( ) ( ) ( ) ( ) ( )6.3.5.01,0,11,0,1 1,1,1 >−−−−−= −−−−−− ttRtutRtf qqQqqQ

For ,10 << t  then ( ) ( ).,0,11,1 tRtf qqQ −= −−−

Domain (2)
Now for domain (2), ,1>t  we consider the initialization period to be, domain (1) above,

,10 ≤< t  therefore, ,1,0 22 == ca  and again we take ( ) 0,0 <∀= ttf . Further, for clarity,

we only consider the unforced problem, that is we take ( ) ,02 =th  therefore from equation (5.3.2)
we have

( ) ( ) ( ) ( ) ( ) ( )7.3.5.,1,0,,,1,0,, 22212121 ttqftQftfdtfd eqiv
q
t

Q
t ψψψ −=−−=+

The Laplace transform, using equation (5.3.3), is given by

( ){ } ( )
( ) ( )8.3.5.

1
12 +

−
=+ −− qQqs

eqiv

sse

s
tfL

ψ

The initialization ( )teqivψ  is now chosen based on ( ) )10(,1 ≤< tth , that is the historic forcing

function, thus
( ) ( ) ( ) ( )( ) ( )9.3.5,11 −−−=−= tututhteqivψ

hence

( ) ( )10.3.5.
1






 −−=
−

s

e
s

s

eqivψ

Substituting this result into equation (5.3.8)

( ){ } ( ) ( ) ( ){ } ( )11.3.5.
1

1

1
1 112 tfLsG

s

e

ss

e
tfLe

s

qQq

s
s =−=

+
−=+

−

−+

−
−

Applying the Laplace shifting theorem, we have
( ) ( ){ } ( ){ } )12.3.5(.1 12 tfLtutfL =−

Thus for 1>t we have the important result ( ) ( ) ,112 >= ttftf  as would be expected from a
proper initialization theory. It is not possible to obtain such results from the contemporary theory
referenced earlier.
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Summary

This paper proves the need for an initialized fractional calculus. The paper presents the
definition sets required for initialized fractional calculi. Two underlying bases have been used,
the Riemann-Liouville based fractional calculus and the Grünwald based fractional calculus (by
reference).

The significant result is that when fractionally differintegrating with respect to t that a
function of t is required as an initialization as opposed to the constant initialization used in the
integer order calculus.

Two types of initialization are introduced “terminal initialization” and “side
initialization”.  Proofs of Ross’ criteria and the initialization constraints that ensue from the
criteria have been referenced. Corrected forms for the Laplace transforms for fractional
differintegals that properly account for the initialization function have been presented.
Commonly studied fractional differential equations have been solved to demonstrate the various
aspects of initialization.
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